Unsupervised model adaptation

نویسنده

  • Alexandre Preti
چکیده

This paper deals with unsupervised model adaptation for speaker recognition. Two adaptation schemes are proposed, the first one is based on a test by test model adaptation and the second one proposes a batch mode, where the adaptation is performed using a set of tests before computing the decision score for each of them. The experiments are conducted thanks to the NIST SRE 2005 database. This paper shows clearly the interest of unsupervised model adaptation when enough test data is available (batch mode) and the intrinsic difficulty of an online (test by test) adaptation mode.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Unsupervised acoustic model adaptation based on phoneme error minimization

In this paper, a new decoding method for unsupervised acoustic model adaptation is presented. In unsupervised adaptation framework, the effectiveness of adaptation process is greatly affected by the mis-recognized labels. Therefore, selection of the adaptation data guided by the confidence measures is effective in unsupervised adaptation. We propose phoneme error minimization framework for exac...

متن کامل

Unsupervised Acoustic Model Adaptati Minimizatio

In this paper, a new decoding method for unsupervised acoustic model adaptation is presented. In unsupervised adaptation framework, the effectiveness of adaptation process is greatly affected by the mis-recognized labels. Therefore, selection of the adaptation data guided by the confidence measures is effective in unsupervised adaptation. We propose phoneme error minimization framework for exac...

متن کامل

On comparing and combining intra-speaker variability compensation and unsupervised model adaptation in speaker verification

In this paper an unsupervised intra-speaker variability compensation method, ISVC, and unsupervised model adaptation are tested to address the problem of limited enrolling data in text-dependent speaker verification. In contrast to model adaptation methods, ISVC is memoryless with respect to previous verification attempts. As shown here, unsupervised model adaptation can lead to substantial imp...

متن کامل

A Continuous Unsupervised Adaptation Method for Speaker Verification

This paper deals with unsupervised model adaptation for speaker verification. We proposed a new method for updating speaker models using all test information incoming in the system. This is a continuous adaptation method which relies on the probability of the test trial belonging to the target speaker. Our adaptation scheme is evaluated in the framework of the NIST SR...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006